ARM - Novel Algorithms Workshop 2020 8th September 2020

‘Reversible Computing:
‘Reuniting Computers &
The 1aws of Phyaics

William €arley

Micklem Tab - DAMTP

ARM - Novel Algorithms Workshop 2020 8th September 2020

Irreveraibility in Computing
; izo%ﬁ =
T

I\ o

b — <] S
A]

e {

(curl -s 'wttr.in/Cambridge' | grep -i rain) 2>

TRUE = Az.\y.x

>>> sum(range(10))

- Q0 -0 =

6-—-F

vel Algorithms Workshop 20

‘Irrwemlbllug in (Pthu:o

ARM - Novel Algorithms Workshop 2020 8th September 2020

Simulating ‘Irreveraibility

[0,100] [100,0] [-200,-300]

f-symimelry

ARM - Novel Algorithms Workshop 2020 8th September 2020

Simulating ‘Irreveraibility

ARM - Novel Algorithms Workshop 2020 8th September 2020

Simulating ‘Irreveraibility

John DeMoss and Kevin Cahill — 2007 — 'Laminar Flow' — University of New Mexico — Dept. Physics & Astronomy

ARM - Novel Algorithms Workshop 2020 8th September 2020

Simulating ‘Irreveraibility

ARM - Novel Algorithms Workshop 2020 8th September 2020

Maxwell 3 Demon
Connecting Thermodynamics to ‘Information Theory

@>>

O-82 kI

)16

Leo Szilard — 1929 — 'On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings' — Zeitschrift fiir Physik
Rolf Landauer — 1961 — 'lIrreversibility and heat generation in the computing process' — IBM J. Res. Dev.

ARM - Novel Algorithms Workshop 2020 8th September 2020

everatbly

Computing

Bennett's RTM2

CSWAP3 / Fredkin Gate
@)
a 0% 1
b h /C
c c 4b
cX
¢ ool) 1
o
CX b o/ |
C c (¢
x
c CCNOT? / Toffoli Gate

Switch Gate3

1Rolf Landauer — 1961 — 'Irreversibility and heat generation in the computing process' — IBM J. Res. Dev.
2Charles H Bennett — 1973 — 'Logical Reversibility of Computation' — IBM J. Res. Dev.
3Edward Fredkin and Tommaso Toffoli — 1981 — 'Conservative Logic' — Collision-Based Computing

ARM - Novel Algorithms Workshop 2020 8th September 2020

“Even if classical balls could be shot with perfect
accuracy into a perfect apparatus, fluctuating tidal
forces from turbulence in the atmospheres of nearby
stars would be enough to randomise their motion within
a few hundred collisions. Needless to say, the trajectory
would be spoiled much sooner if stronger nearby noise
sources (e.g., thermal radiation and conduction) were
not eliminated.”

- Charles Bennett

Charles H Bennett — 1982 — ‘The thermodynamics of computation—a review’ — Int. J. Theor. Phys.

ARM - Novel Algorithms Workshop 2020 8th September 2020

ihd, [(t)) = H [(1)) £. q
(n dt)) = U™ [(0)) d=Ee,e =)

U = e—iH(St/ﬁ ,@
U_l = U~ <m,l y\,> =8M S~

Peter W Shor — 1994 — 'Algorithms for quantum computation: discrete logarithms and factoring' — Proc. 35th FOCS
Norman Margolus and Lev B Levitin — 1998 — 'The maximum speed of dynamical evolution' — Physica D

ARM - Novel Algorithms Workshop 2020 8th September 2020

The Simpsons — 'Trash of the Titans' — S09E22

ARM - Novel Algorithms Workshop 2020 8th September 2020

Garbage

foxe fz)
frx e (2, f(x))

y v P uT o w T Pur
@ HUS Tory
ouwuTPuT O uTPut

Charles H Bennett — 1973 — 'Logical Reversibility of Computation' — IBM J. Res. Dev.

ARM - Novel Algorithms Workshop 2020

‘Pebbling

TABLE 2

Reversible simulation in time O(T'**'*#2) and space O(S - log T).

Checkpoints in storage (0= initial 1D,

Stage Action checkpoint j = (jm)th step ID)

0 Start 0

1 Do segment 1 0 1

2 Do segment 2 0 1 2

3 Undo segment 1 0 2

4 Do segment 3 0 2 3

5 Do segment 4 0 2 3 4

6 Undo segment 3 0 2 4

7 Do segment 1 0 1 2 4

8 Undo segment 2 0 1 4

9 Undo segment 1 0 4
10 Do segment § 0 4 5
11 Do segment 6 0 + 5 6
12 Undo segment 5 0 4 6

13 Do segment 7 0 4 6 7
14 Do segment 8 0 4 6 7 8
15 Undo segment 7 0 4 6 8
16 Do segment 5 0 4 5 6 8
17 Undo segment 6 0 4 5 8
18 Undo segment 5 0 4 8
19 Do segment 1 0 1 4 8
20 Do segment 2 0 1 2 4 8
21 Undo segment 1 0 2 4 8
22 Do segment 3 0 2 3 4 8
23 Undo segment 4 0 2 3 8
24 Undo segment 3 0 2 8
25 Do segment 1 0 1 2 8
26 Undo segment 2 0 1 8
27 Undo segment 1 0 8

Charles H Bennett — 1989 — 'Time/Space Trade-Offs for Reversible Computation' — SIAM J. Comp.

8th September 2020

ARM - Novel Algorithms Workshop 2020 8th September 2020

Thinking ‘Reveraibly

- Bennett's algorithms
- efficient embedding of irreversibility

- not easily composable

- injective rather than bijective

ARM - Novel Algorithms Workshop 2020 8th September 2020

Thinking ‘Reveraibly

- True reversible programming: make use of bijections
+: (a,b) — (a,b,a+b) X

+1 : (a,b) <> (a + b, b)
+9: (a,b) <> (a+b,a — b)

- By appropriately exploiting information in the output, can reduce or even
eliminate the 'garbage’ output

- The remaining garbage, if purposefully constructed, is often found to be
useful for further computation

- For example, it turns out that +1 and some reversible looping is sufficient for

square : n < n’

ARM - Novel Algorithms Workshop 2020 8th September 2020

oample 1

Addition /Subtraction

a —> (o ath > (ath
4 Z@> {Lﬁf 3

2+ o 3 $

N _ o

- Reversible analogue of Peano definition 5 :

)

- Straightforward extension to Integers ° .

- Can also implement for Rationals and Reals)

ARM - Novel Algorithms Workshop 2020 8th September 2020

&(unple 2 n’ :§(2k+1)

square/dquare ‘Root o

oa—~>ft

n—>(n O}i\—;\
/

" m+2rL ¢ |

@ S

r\ m-\—ﬂ“’\

ARM - Novel Algorithms Workshop 2020 8th September 2020

i - le 3 iy [(t
iha) = o 92 + Viz) | |¥) W(n ot

E schrédinger's Equation

;; This subroutine changes a point in the real wave DEST
;3 according to the curvature in the corresponding

= H (1))
= U" [4(0))

_ e—zH(St/h

N—

)
)

- G
|

U~ U”

;3 neighborhood in the real wave SRC, and the potential at /x:?
;; the given point.
(defsub pfunc (dest src i alphas epsilon)

((dest _ i) += ((alphas _ i) */ (src _ 1)))

((dest _ i) -= (epsilon */ (src _ ((i + 1) & 127))))

((dest _ i) -= (epsilon */ (src _ ((i - 1) & 127)))))

;; Take turns updating the two components of the wave in a /‘\\ ————;>]1-

;; way such that they will chase each other around in
;; (higher-dimensional) circles.
(defsub schstep (psiR psil alphas epsilon)
;3 psiR += f(psil)
(for 1 = 0 to 127
;3 psiR[i] += pfunc(psiI,i)
(call pfunc psiR psil i alphas epsilon))
;5 psil -= f(psiR)
(for 1 = 0 to 127
;3 psiI[i] -= pfunc(psiR,i)
(rcall pfunc psil psiR i alphas epsilon)))
;3 Print the current wave to the output stream. u u
(defsub printwave (wave)
(for i = 0 to 127

(printword (wave _ 1i)))
(println))

;3 Main program, goes by the name of SCHROED.

(defmain schroed ’(
(for i = 1 to 1000 ;Time for electron to fall to well bottom.

(call schstep psiR psiI alphas epsilon)
;3 Print both wave components.

(call printwave psiR)

(call printwave psiI)))

Michael P Frank — 1997 — ‘The R Programming Language and Compiler’ — MIT Rev. Comp. Proj. Memo

ARM - Novel Algorithms Workshop 2020 8th September 2020

‘Reverasible languages

(defsub mult (ml1 m2 prod)

;5 Use grade-school algorithm: _ |
(for pos = 0 to 31 (defun fact (n) (assert (and (integerp n) (> n 0)))

Lf ' * fact (1-
(if (m1 & (1 << pos)) then (1 (onep n) #'onep n (* n (fac (n)))))
(prod += (m2 << pos)))))

Y-LISP2
F{l
procedure fib procedure main_fwd type Nat4 = Bool * Bool * Bool * Bool
if n=0 then x1 += 1 n += 4
x2 += 1 call fib addl :: Nat4 & Nat4 :: subl
elsen -=1 | (a, b, c, False) < (a, b, c, True)
call fib procedure main_bwd | (a, b, False, True) < (a, b, True, False)
x1 += x2 x1 += 5 | (a, False, True, True) < (a, True, False, False)
x1 <=> x2 x2 += 8 | (False, True, True, True) < (True, False, False, False)
fi x1=x2 uncall fib | (True, True, True, True) < (False, False, False, False)
Janus3 Theseus*

1Michael P Frank — 1997 — ‘The R Programming Language and Compile’ — MIT Rev. Comp. Proj. Memo
2Henry G Baker — 1992 — 'NREVERSAL of Fortune—the Thermodynamics of Garbage Collection' — Intl. Workshop on Memory Management
3Tetsuo Yokoyama and Robert Gliick — 2007 — 'A reversible programming language and its invertible self-interpreter.' —
Partial evaluation and semantics-based program manipulation.
4Roshan P James and Amr Sabry — 2014 — 'Theseus: a high-level language for reversible computation.' — Reversible Computation

ARM - Novel Algorithms Workshop 2020 8th September 2020

‘Reverasible languages

swap-fll swap-fl2 : {a b ¢: U} — PLUS a (PLUS b ¢) +» PLUS ¢ (PLUS b a)
str(s|count) { swap-fll = assocl; ©® swap; © (id<> @ swap,)
s [

s temp s temp s temp s temp swap-fl2 = (id<> @ swap,) ®
S temp s temp s temp s temp

0)
count str(s|count)len | count a$od+.;‘d .
temp s temp s temp s temp s (swap+<g| ¢+)g,
temp s temp s temp s temp s assocry ©
] s (ide> & swap.)
} (s|count)len
revloop(in|count|out) { r16
count |
in temp in temp in temp in temp in
temp in temp in temp in temp in 3 4
out temp out temp out temp out temp out L -
£ -- Peano definition of natural numbers 0
emp out temp out temp out temp out
revloop(in|count|out)poolver data Z; 30 4
, |]CC|>unt L data ; 1
(in|count |out)poolver
P | - 413
reverse(in|out) { -- reversible Peano addition 1
str(in|count)len = : 52 2
revloop(in|count |out)poolver () _ () () 4)
nel (count|out)rts ~ . !
} (in|out)esrever - ! 6 31
)
(ent|in) { reverse(in|out)esrever } (out|ent) -- termination conditions 7 4 @
! _ 0
Kayaks - ; _ 7 4
alethe”

5Ben Rudiak-Gould — 2002 — Esoteric Programming Language Awards
6Jacques Carette, Roshan P. James, and Amr Sabry — 2018 — 'Embracing the laws of physics: Three reversible models of computation.’ — arXiv
"William Earley — 2019 — DNA25 Poster; Paper in Preparation

ARM - Novel Algorithms Workshop 2020

8th September 2020

Quantum languages

procedure grover(int n) {

int 1=floor(log(n,2))+1; // no. of qubits . .
int m=ceil (pi/8*sqrt(2°1)); // no. of iterations 'meor't Qu1pper‘
int x;
int i;
qureg q[11; N o .
qures £01]. spos :: Bool -> Circ Qubit
. spos b = do g <- gqinit b
reset; r <- hadamard q
Mix(q); // prepare superposition
for i= 1 tom { // main loop retur‘n r
query(q,f,n); // calculate C(q)
CPhase(pi,f); // negate |n> .
'query(q,£,0); // undo C(q) Qu1pper
diffuse(q); // diffusion operator
}
measure q,X; // measurement
print "measured",x;
} until x==n;
}
Solve a circuit-satisfiability problem. def solvel[n:!N](bits:!B”*n){

repare superposition between @ and 1
linclude <gates> // prep perp

x:=H(0:B);
fuse_macro notl not_x4 // prepare superposition between bits and @
not_x4.%$A = x3
x4-3 qs := if x then bits else (0:int[n]) as B”"n;

not_x4.%$Y = $x4
// uncompute x

‘use_macro or2 or_x5 forget(x=qs[01); // valid because ‘bits[0]==

or_x5.%$A = x1
or_x5.$B x2
or_x5.$Y = $x5 }

QMASM

return gs;

Silq

qCGL

toff : Q2 — Q2 — Q2 — Q2 ® (Q2 ® Q2)
toff cx y=if° ¢

then (qtrue, cnot z y)
else (qfalse, (z,v))

QML

Q#

LIQUi)

Qlsl)
QPL

QFC

ARM - Novel Algorithms Workshop 2020 8th September 2020

Reveraible va Trreveraible

- Equipotent

- Fundamentally same resource usage
- Reversible makes erasure explicit

- Canreduce net resource usage

- Reversibility encourages a more careful and efficient approach
to resource usage

ARM - Novel Algorithms Workshop 2020 8th September 2020
‘Hybrid

- What might a reversibility exploitation story look like?

- Reversible processor with entropy-dissipation co-processor

- Expose irreversible abstraction layer over reversible
operations (or reversibility aware compiler to insert
erasure operations)

- Gradual software transition

- Intermediate benefit: transition from actively dissipative
transistors to low energy components

ARM - Novel Algorithms Workshop 2020 8th September 2020

linear Types

- Linear logic is a superset of Quantum logic
- Capable of describing reversible computation

- Not strictly reversible though, e.qg.
£1 —o (sweets & crisps & drink)

- Gateway drug to reversible programming

- e.g. new Haskell extension to specify that an argument
must be consumed (forbids implicit erasure)

ARM - Novel Algorithms Workshop 2020 8th September 2020

Reaearch Tumeline

- Information-Entropy Connection (Szilard '29, Landauer '61)
- Foundation of Reversible Computation (Bennett '73)

- Ballistic Computation (Toffoli+Fredkin '81)

- Programming Languages (V-LISP: Baker '92, R: Frank '97, ...)

- Analyses of Physical Limits (Frank '99, Lloyd '02, ...)

ARM - Novel Algorithms Workshop 2020 8th September 2020

- Helical Logic (Merkle '96)

- Passive Transistor Logic (de Vos et al '99)

- Quantum Dot Cellular Automata (Lent et al '01-'03)

- nSQUID Josephson-Junction Circuits (Semenov et al '03)

- Asynchronous Ballistic Fluxon Logic (Frank et al '17)

...along with research inlo effective synthesis of the relevant circuils

N.B. These technologies mostly predate the papers listed; to the best of my knowledge these are the first rigorous applications of each
technology to the field of reversible computing.

ARM - Novel Algorithms Workshop 2020 8th September 2020
cngines of ‘Parsimony

|. How fast can any computer run, given some spacetime
region and power supply and taking into account all areas of

physics?

Il. What happens when we try to communicate between/
synchronise reversible computers?

lll. What happens when we try to share some common resource
between asynchronous reversible computers?

William Earley — 2020 — 'Engines of Parsimony: Part I; Limits on Computational Rates in Physical Systems' — arXiv
William Earley — 2020-2021 — Parts Il & Il — In Preparation

ARM - Novel Algorithms Workshop 2020 8th September 2020

Thank you!

EPSRC

Englneerlng and Physical Sciences
Research Council

Department of Applied Mathematics
and Theoretical Physics (DAMTP)

William Earley — 2016-2021 — 'Modelling approaches to molecular computation' — EPSRC Project Reference 1781682

