
Sandia National Laboratories August 2022

!e ℵ–Calculus
a declarative model of reversible programming

Hannah Earley
h@nnah.io • DAMTP, Cambridge • Vaire Computing

mailto:h@nnah.io

Sandia National Laboratories August 2022

reversible programming

ℵ: motivation, semantics, & tutorial

ℵ: advanced features & properties

alethe + ℵ concurrency

Sandia National Laboratories August 2022

Irreversible Computing

a b c

0 0 1
0 1 1
1 0 1
1 1 0

mov AL, 314
jne loop

int i = 5;
while (i--) {
 printf("%d\n", i);
}

sort !" Ord a !# [a] !$ [a]
sort [] = []
sort (x:xs) =
 let le = sort [a | a !% xs, a !& x]
 gt = sort [a | a !% xs, a > x]
 in le !' [x] !' gt

Sandia National Laboratories August 2022

Invertibility?

Sandia National Laboratories August 2022

Invertibility?

Sandia National Laboratories August 2022

Invertibility?
THE QUICK BROWN
FOX JUMPS OVER
THE LAZY DOG

QEB NRFZH YOLTK
CLU GRJMP LSBO
QEB IXWV ALD

encdec

divmod

muladd

inverse
programs

bidirectional
transforms

{"fruit":[
 "apple",
 "banana",
 "cherry"]}

fruit:
- apple
- banana
- cherry

debugging

Sandia National Laboratories August 2022

Reversible Computing

* but reversible!

*

<latexit sha1_base64="kq7RGdEn24CHQZ92xng+Xj38SRo=">AAAB9XicbVBNSwMxEJ31s9avqkcvwSLUS9mVoh6LXjxWsB/QriWbZtvQJLskWW1Z+j+8eFDEq//Fm//GtN2Dtj4YeLw3w8y8IOZMG9f9dlZW19Y3NnNb+e2d3b39wsFhQ0eJIrROIh6pVoA15UzSumGG01asKBYBp81geDP1m49UaRbJezOOqS9wX7KQEWys9DBCHYFjbSIUlkZn3ULRLbszoGXiZaQIGWrdwlenF5FEUGkIx1q3PTc2foqVYYTTSb6TaBpjMsR92rZUYkG1n86unqBTq/RQGClb0qCZ+nsixULrsQhsp8BmoBe9qfif105MeOWnTMaJoZLMF4UJR/bLaQSoxxQlho8twUQxeysiA6wwMTaovA3BW3x5mTTOy95FuXJXKVavszhycAwnUAIPLqEKt1CDOhBQ8Ayv8OY8OS/Ou/Mxb11xspkj+APn8weLE5Hm</latexit>

x 7! f(x)

<latexit sha1_base64="uuAdWDK9kVzz2CsnDynDByYdVzo=">AAACA3icbVBNS8NAEN34WetX1JteFovQgpREinosevFYwX5AW8pmu2mXbjZhd6ItoeDFv+LFgyJe/RPe/Ddu2xy09cHA470ZZuZ5keAaHOfbWlpeWV1bz2xkN7e2d3btvf2aDmNFWZWGIlQNj2gmuGRV4CBYI1KMBJ5gdW9wPfHr90xpHso7GEWsHZCe5D6nBIzUsQ+HuCWYD4r3+kCUCh9wfnjq54eFQsfOOUVnCrxI3JTkUIpKx/5qdUMaB0wCFUTrputE0E6IAk4FG2dbsWYRoQPSY01DJQmYbifTH8b4xChd7IfKlAQ8VX9PJCTQehR4pjMg0Nfz3kT8z2vG4F+2Ey6jGJiks0V+LDCEeBII7nLFKIiRIYQqbm7FtE8UoWBiy5oQ3PmXF0ntrOieF0u3pVz5Ko0jg47QMcojF12gMrpBFVRFFD2iZ/SK3qwn68V6tz5mrUtWOnOA/sD6/AGsRpbk</latexit>

x $ (x, f(x))

<latexit sha1_base64="zSFo36pVkUQCZGko8awBYfoT9sE=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq9gOaUDbbTbt0sxt2N0oJ/RtePCji1T/jzX/jps1BWx8MPN6bYWZemHCmjet+O6WV1bX1jfJmZWt7Z3evun/Q1jJVhLaI5FJ1Q6wpZ4K2DDOcdhNFcRxy2gnHN7nfeaRKMykezCShQYyHgkWMYGMl379nw5HBSsmnSr9ac+vuDGiZeAWpQYFmv/rlDyRJYyoM4VjrnucmJsiwMoxwOq34qaYJJmM8pD1LBY6pDrLZzVN0YpUBiqSyJQyaqb8nMhxrPYlD2xljM9KLXi7+5/VSE10FGRNJaqgg80VRypGRKA8ADZiixPCJJZgoZm9FZIQVJsbGlIfgLb68TNpnde+ifn53XmtcF3GU4QiO4RQ8uIQG3EITWkAggWd4hTcndV6cd+dj3lpyiplD+APn8wfMrpGK</latexit>

)

Sandia National Laboratories August 2022

Reversible Computing

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 1 0
1 0 1
1 1 1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
1 1 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Toffoli / CCNOTFredkin / CSWAP

Sandia National Laboratories August 2022

Reversible Computing

Sandia National Laboratories August 2022

Reversible Computing

Sandia National Laboratories August 2022

Reversible Computing

Sandia National Laboratories August 2022

Reversible Computing

Sandia National Laboratories August 2022

theseus

kayak

RFUN

Sandia National Laboratories August 2022

reversible programming

ℵ: motivation, semantics, & tutorial

ℵ: advanced features & properties

alethe + ℵ concurrency

Sandia National Laboratories August 2022

!e ℵ–Calculus: Motivation

- λ-calculus inspiration

- simple definition

- reduction semantics

- self-contained execution

- molecular programming

Sandia National Laboratories August 2022

!e ℵ–Calculus: Motivation

- λ-calculus inspiration

- simple definition

- reduction semantics

- self-contained execution

- molecular programming

Sandia National Laboratories August 2022

Attempt 1: !e Σ-Calculus
definition

Church encoding

list reversal

Hannah Earley — 2017 — sigma Interpreter — https://github.com/hannah-earley/sigma-repl
Hannah Earley — 2017 — sigma Interpreter — https://github.com/hannah-earley/sigma-examples

https://github.com/hannah-earley/sigma-repl
https://github.com/hannah-earley/sigma-examples

Sandia National Laboratories August 2022

Attempt 2: !e ℵ–Calculus

- declarative

- reversible TRS semantics, without history

- minimalistic definition

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Addition

Sandia National Laboratories August 2022

Squaring

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

Squaring

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

2 H. Earley

and briefly discuss some language extensions. In the interest of space, proofs of
theorems such as non-ambiguity and reversible-Turing completeness are deferred
to an accompanying longer report.

2 Examples

Recursion: Addition & Subtraction The inductive definition of Peano
addition, a+Z = a and a+Sb = S(a+ b) where a natural number is either Z ≡ 0
or the successor (S) of another natural number, can be readily reversibilized.
Reversible addition must return both the sum, and additional information to
determine what both addends were. Here, we will keep the second addend:
a+Z = (a,Z) and a+ b = (c, b) =⇒ a+Sb = (Sc,Sb). In the ℵ-calculus, this is:

! + a b (); ! () c b +;

+ a Z () = () a Z +; (add–base)

+ a (Sb) () = () (Sc) (Sb) +: (add–step)

+ a b () = () c b +. (add–step–sub)

The first line says that terms of the form + a b () and () c b + are halting states
(either initial or final), where a, b, c are variable terms. This is stated via the
syntax !. Note the () term, pronounced ‘unit’; this is an empty set of parentheses
that is used by convention for disambiguation between definitions. The second
line, definition (add–base), implements the base rule that a+Z = (a,Z). As this
is a Term-Rewriting System (TRS), we have a term on both sides and so the
expression is more symmetric. As the term encapsulates all information about
program state, we need a witness to the fact that an addition (rather than a
multiplication or something else) was performed; here this is given by reusing
the + symbol (identifier) on the right hand side. The next definition, (add–step),
implements the inductive step and has as a sub-rule (add–step–sub), which
performs the recursion. The above can perhaps best be understood through the
below evaluation trace of 3 + 2 = (5, 2):

! + 3 2 () ! {a !→ 3, b !→ 1} {c !→ 4, b !→ 1} ! () 5 2 + ! (add–step)

(add–step–sub)

+ 3 1 () ! {a !→ 3, b !→ 0} {c !→ 3, b !→ 0} ! () 4 1 + (add–step)

(add–step–sub)

+ 3 Z () ! {a !→ 3} ! () 3 Z + (add–base)

Squiggly arrows represent matching against the patterns in the definitions, and
solid arrows refer to instantiation/consumption of ‘sub-terms’.

Iteration: Squaring & Square-Rooting A more involved example is given by
reversible squaring and square-rooting. Reversible squaring may be implemented
using addition as a sub-routine via the fact m2 =

∑
m−1

k=0
(k+k+1). By doing the

sum in reverse (i.e. starting with k = m− 1 and decrementing it towards 0), m is

Sandia National Laboratories August 2022

reversible programming

ℵ: motivation, semantics, & tutorial

ℵ: advanced features & properties

alethe + ℵ concurrency

Sandia National Laboratories August 2022

Higher Order

Sandia National Laboratories August 2022

r-Turing Completeness

Sandia National Laboratories August 2022

r-Turing Completeness

Sandia National Laboratories August 2022

Ambiguity

- rTM: disjoint domains and codomains

- ℵ: symmetric definitions

- more subtle — no term can match >2 (comp) patterns

- edge case — ≤1 comp pattern and any halt patterns

- simple graph-based algorithm

- relaxation non-deterministic ℵ<latexit sha1_base64="Hixo8HSyHyFdnDxjE5iKL5SELL0=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoxWMV+wFpKJvtpl262Q27E6WU/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvSgU36HnfTmFldW19o7hZ2tre2d0r7x80jco0ZQ2qhNLtiBgmuGQN5ChYO9WMJJFgrWh4M/Vbj0wbruQDjlIWJqQvecwpQSsFnXveHyDRWj11yxWv6s3gLhM/JxXIUe+Wvzo9RbOESaSCGBP4XorhmGjkVLBJqZMZlhI6JH0WWCpJwkw4np08cU+s0nNjpW1JdGfq74kxSYwZJZHtTAgOzKI3Ff/zggzjq3DMZZohk3S+KM6Ei8qd/u/2uGYUxcgSQjW3t7p0QDShaFMq2RD8xZeXSfOs6l9Uz+/OK7XrPI4iHMExnIIPl1CDW6hDAygoeIZXeHPQeXHenY95a8HJZw7hD5zPH5QJkXY=</latexit>)

Sandia National Laboratories August 2022

)ecution Planning

Sandia National Laboratories August 2022

)ecution Planning

Sandia National Laboratories August 2022

Directional EvaluationThe ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

* * *

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

*

?

Sandia National Laboratories August 2022

Directional EvaluationThe ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

* * *

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

*

?
computational inertia

<latexit sha1_base64="VDWDTjX3IOCwPHPG4xamOWrMkMo=">AAACEHicbZDLSsNAFIYn9VbrLerSTbCIrkpSi7oRim5cVrAXaEOYTCft0MkkzJwIJeQR3Pgqblwo4talO9/GaRtQW38Y+PnOOZw5vx9zpsC2v4zC0vLK6lpxvbSxubW9Y+7utVSUSEKbJOKR7PhYUc4EbQIDTjuxpDj0OW37o+tJvX1PpWKRuINxTN0QDwQLGMGgkWceg+f0FGAykpSnMksvM/CqP0TNyKlnlu2KPZW1aJzclFGuhmd+9voRSUIqgHCsVNexY3BTLIERTrNSL1E01kvwgHa1FTikyk2nB2XWkSZ9K4ikfgKsKf09keJQqXHo684Qw1DN1ybwv1o3geDCTZmIE6CCzBYFCbcgsibpWH0mKQE+1gYTyfRfLTLEEhPQGZZ0CM78yYumVa04Z5Xaba1cv8rjKKIDdIhOkIPOUR3doAZqIoIe0BN6Qa/Go/FsvBnvs9aCkc/soz8yPr4BLC+d8g==</latexit>

t1
r
= t2

s
= t3

<latexit sha1_base64="gC6WLBNdjYrk1F0ZdseCcMbgdiw=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgxbArQT0GvXiMYB6QjWF20kmGzM6uM7NCWPIbXjwo4tWf8ebfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAajm6nffEKleSTvzTjGTkgHkvc5o8ZKvvYlPhL1kJ55k26x5JbdGcgy8TJSggy1bvHL70UsCVEaJqjWbc+NTSelynAmcFLwE40xZSM6wLalkoaoO+ns5gk5sUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP+qk3IZJwYlmy/qJ4KYiEwDID2ukBkxtoQyxe2thA2poszYmAo2BG/x5WXSOC97F+XKXaVUvc7iyMMRHMMpeHAJVbiFGtSBQQzP8ApvTuK8OO/Ox7w152Qzh/AHzucPefGRVA==</latexit>

s 6= r�1

Sandia National Laboratories August 2022

reversible programming

ℵ: motivation, semantics, & tutorial

ℵ: advanced features & properties

alethe + ℵ concurrency

Sandia National Laboratories August 2022

Alethe

Hannah Earley — 2020 — Alethe Interpreter — https://github.com/hannah-earley/alethe-repl

a Z + a Z;
a (S b) + (S c) (S b):
 a b + c b.

n ^2 n2:
 ! Go n Z = Go Z n2.
 Go (S n) m = Go n (S k):
 m n + l n.
 l n + k n.

a b `Pair` n:
 ! Go n Z Z = Go Z a b.
 Go (S n) Z b = Go n (S b) Z;
 Go (S n) (S a) b = Go n a (S b);

Sandia National Laboratories August 2022

Concurrency

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

<latexit sha1_base64="dlWP3AlJVJxPDDb62iiM2I/hhpA=">AAACgnicbVFbb9MwFHbCgFFuHTzyYqiGBtpCwiZAhUkTvPA4JLpNqkt14p6sVh0nsk+mVaH9H/wt3vg14LYZl40j2fr0XXTsc9JSK0dx/CMIr61dv3Fz/Vbr9p279+63Nx4cuaKyEnuy0IU9ScGhVgZ7pEjjSWkR8lTjcTr5sNCPz9A6VZjPNC1xkMOpUZmSQJ4atr+JUvGn3e4+F4Tn5GTtpvmMz7/OfxNnYFfEltj27i8CHIntZ1yIlrDjokk3wv4FWMoj1ASNwVu7i2uVn6A1OwmeR39apVn9eDa/yL8dtjtxFC+LXwVJAzqsqcNh+7sYFbLK0ZDU4Fw/iUsa1GBJSY2zlqgcliAncIp9Dw3k6Ab1coQzvumZEc8K648hvmT/TtSQOz+Z1DtzoLG7rC3I/2n9irI3g1qZsiI0ctUoqzSngi/2wUfKoiQ99QCkVf6tXI7BgiS/tZYfQnL5y1fB0csoeRXtfdrrHLxvxrHOHrEnbIsl7DU7YB/ZIesxyX4Gm0EUvAjXwudhEu6urGHQZB6yfyp89wvwqcDX</latexit>

⇡ ::= sym | var | (⇡⇤)

⇢ ::= ⇡⇤ = ⇡⇤

� ::= ⇢ : ⇢⇤. | ! ⇡⇤;

<latexit sha1_base64="aMc34G3yTPAPY0jOqo+gP4JOxcg=">AAACq3icbVFdb9MwFHXCgFG+Cjzy4lEBRdqqBE2AiiZN7GVPUxF0rahL5bg3m1XHieybaVVIf9x+wt74N3PbdBsrV7J0fM49x/Z1lClpMQj+ev69jfsPHm4+qj1+8vTZ8/qLl8c2zY2ArkhVavoRt6Ckhi5KVNDPDPAkUtCLJgdzvXcGxspU/8RpBsOEn2gZS8HRUaP6Bcskfddu71GGcI5WFHaalHT2Z3ZNnHGzJJps23X/Ztwi2/5AGauxzsqcyfZKWzO/v5HmnjEo5JWtcAnLwHLv9qZ9DSdg9E4I562b2CgutsrZKvPrqN4IWsGi6DoIK9AgVXVG9Us2TkWegEahuLWDMMhwWHCDUigoayy3kHEx4ScwcFDzBOywWMy6pG8dM6ZxatzSSBfsbUfBE+tGGLnOhOOpvavNyf9pgxzjL8NC6ixH0GJ5UJwriimdfxwdSwMC1dQBLox0d6XilBsu0H1vzQ0hvPvkdXD8sRV+au1+323sf6vGsUlekzekSULymeyTQ9IhXSK8pnfk9by+v+P/8H/5bNnqe5XnFfmnfLgCbtDQ+w==</latexit>

⇡ ::= sym | var | (⇡⇤)

⇧ ::= ⇡ : ⇡⇤ | var0 : ⇡⇤

� ::= {⇧⇤} = {⇧⇤} : ⇧⇤. | ! ⇡⇤;

The ℵ-Calculus 3

consumed whilst n = m2 is generated. This also shows how iteration/looping can
be implemented in the ℵ-calculus. The definition of squaring (Sq) is given below:

! Sq m (); ! () n Sq;

Sq m () = Sq Z m Sq; (sq–begin)

Sq s (Sk) Sq = Sq (Ss′′) k Sq: (sq–step)

+ s k () = () s′ k +. -- s
′

← s + k

+ s′ k () = () s′′ k +. -- s
′′

← s
′

+ k

Sq n Z Sq = () n Sq; (sq–end)

In a reversible loop, you have a reverse conditional branch for entering/continuing
the loop and a forward conditional branch for continuing/exiting the loop. These
are implemented by rules (sq–begin,–end). Meanwhile rule (sq–step) performs
the actual additions of the sum. The reader may notice that Sq appears twice
in (sq–step); this is merely for symmetric aesthetics, and to distinguish it from
halting terms which are typically marked with (). An example evaluation trace of
32 = 9 (resp.

√
9 = 3) is given by:

! Sq 3 () = Sq Z 3 Sq = Sq 5 2 Sq = Sq 8 1 Sq = Sq 9 Z Sq = () 9 Sq !

There is no precondition in the forward direction (except that m should be a
well-formed natural number), but the reverse direction requires n = m2 be a
square number. If we try to take

√
10,

! () 10 Sq = Sq 10 Z Sq = Sq 9 1 Sq = Sq 6 2 Sq = Sq 1 3 Sq ⊥

the computation stalls with {s′′ #→ 0, k #→ 3} because 3 cannot be subtracted
from 0. Specifically, there is no matching rule for the sub-term () Z 3 +.

3 Definition

A computation in the ℵ-calculus consists of a term and a program governing the
reversible evolution of the term. A term is a tree whose leaves are symbols, which
are drawn from some infinite set of identifiers (e.g. +, Sq, S, Z, Map); terms are
conventionally written with nested parentheses, e.g. Sq (S(S(SZ))) (). Equival-
ently, a term is either a symbol or a string of terms; we call a string of terms a
multiterm. A program is a series of definitions. A definition is either (1) halting,
e.g. ! Sq n (), indicating that multiterms matching the given pattern are in a
halting state (annotated with !); or (2) computational, e.g. Sq n () = Sq Z n Sq,
indicating that multiterms matching the left-pattern may be mapped to a multi-
term matching the right-pattern, or vice-versa. Computational definitions may
have sub-rules, e.g. + s k () = () s′ k +, which need to be invoked to complete
the mapping. These are summarized in BNF notation below:

π ::= sym | var | (π∗) (pattern term)

ρ ::= π∗ = π∗ (rule)

δ ::= ρ : ρ.∗ | ! π∗; (definition)

Sandia National Laboratories August 2022

Properties + Future Work

- r-Turing Complete

- Confluent Semantics

- Concurrent variant

- Interpreter written

- Implement & study
concurrent variant

- Type system

- Apply to molecular
programming

Sandia National Laboratories August 2022

!ank you!

Hannah Earley — 2016–2021 — 'Modelling approaches to molecular computation' — EPSRC Project Reference 1781682
Hannah Earley — 2020/2022 — 'The ℵ-Calculus' — arXiv/Proceedings of RC22

Department of Applied Mathematics
and Theoretical Physics (DAMTP)

