Unconventional Computing

A guide to programming molecules and turning back (computational) time

William Earley¹

Department of Applied Maths and Theoretical Physics, University of Cambridge

8th February 2019

¹wje25@cam.ac.uk

Who Am I?

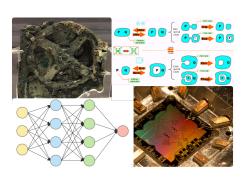
- I am a PhD student at Trinity Hall, based at DAMTP
- ► I also did my undergraduate at Trinity Hall, in Natural Sciences
- ▶ I seem to routinely find myself stretched between disciplines!
 - Throughout undergrad, I was half and half between biology and physics
 - My current research touches computer science, maths, physics and biochemistry
 - ▶ I guess this makes me a jack of all trades, though I hope to become a master of something by the end of my PhD!

Unconventional Computing

There are many types of computing:

- ► Von Neumann-style
- Analogue Computing
- Quantum Computing
- Artificial Neural Networks
- ► Reversible Computing
- Molecular Computing
- etc.

Here, I will discuss reversible and molecular computing, and show some of my work at the intersection of these two fields.



Outline

Reversible Computing

Molecular Computing

Limits of Thermal Computing

Cooperative Thermal Computing Resource Sharing Communication

Programming a Reversible Computer

Outline

Reversible Computing

Molecular Computing

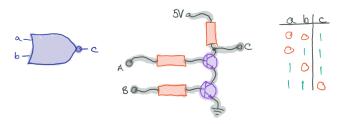
Limits of Thermal Computing

Cooperative Thermal Computing Resource Sharing Communication

Programming a Reversible Computer

Irreversible computing

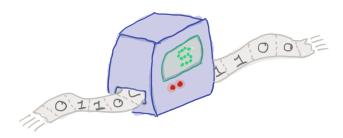
- ► The laws of the universe are fundamentally reversible, even quantum mechanics.
- ▶ This means that no information can ever be lost.
- Conventional computers, however, completely fail to be reversible.
- ► The transistors and logic gates that make up all modern computers actively discard information:



Even the foundations of Computer Science rely on irreversibility...

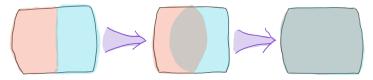
Foundations of Computing: The Turing Machine

- Remarkably simple yet powerful.
- Consists of a tape of unlimited size, inscribed with symbols.
- ► A head scans these symbols and, depending on an internal state, may overwrite them and move the tape.
- By overwriting symbols and its internal state, the machine irreversibly forgets the past.
- It is famous for being one of the first models to be computationally universal.



Reversible computing

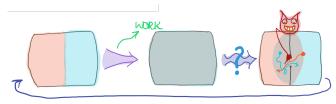
- If the universe is reversible, how can computers be irreversible?
- As always, 'irreversibility' emerges from the laws of thermodynamics.
- ► The second law states that in any process, the entropy of the universe never decreases.



- ▶ There is more to this story, however.
- ► Time to see a dæmon about a box!

Maxwell's Dæmon

- Ever since the origins of thermodynamics, many have tried to find ways to circumvent it, or at least understand why certain things are disallowed.
- One famous thought experiment is Maxwell's dæmon (so named by Lord Kelvin!)
- A microscopic dæmon sits between two sides of a box, watching the particles closely.
- ▶ It then carefully opens the door in order to let fast particles through to the right side, and slow particles to the left side.
- Over time then, shouldn't we find a temperature difference, and so a decrease in entropy?



Banishing the Dæmon

- Many have tried to solve Maxwell's Dæmon, either in the positive or negative.
- ► Landauer's solution², however, was the first to satisfy most.
- He considers the simpler system to the right.
- Can any 'dæmon' X perform such a task without doing any work?
- Reversibility shows that this is impossible!
- We also see the entropy would decrease by $k_B \log 2$.

²Landauer 1961.

Landauer's Principle

- What is the intuitive reason for Maxwell's dæmon not existing?
- Landauer showed that it had to do with the connection between information and entropy
- If a quantity of information I is 'erased', then the entropy (volume of phase space $S = k_B \log W$) has decreased by $k_B I$, violating Liouville's theorem!
- We can therefore only move information. If we want to forget it, we need to dump it somewhere.
- The environment is always a good dumping ground...
- ▶ Landauer's principle states that forgetting information I requires dissipating at least k_BTI in heat.

Does Logic require Irreversibility?

- Landauer argued yes, on the basis that a reversible computer would get cramped.
- ► If so, then the efficiency of computers has a limit (though we're currently 8 orders of magnitude above Landauer's limit!)
- ► Charles Bennett³, often regarded as the founder of reversible computing, showed that reversible computing was both possible and practical.
- ▶ To do so, he came up with a *reversible* Turing Machine.
- He also showed how to use it to simulate any irreversible program efficiently.

³Bennett 1973.

Bennett's Algorithms

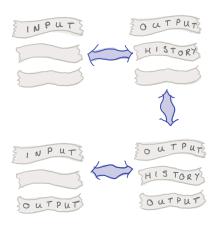


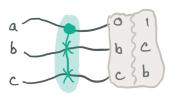
Table 2
Reversible simulation in time $O(T^{\log 3/\log 2})$ and space $O(S \cdot \log T)$.

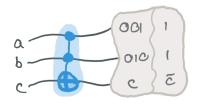
Stage	Action	Checkpoints in storage $(0 = \text{initial ID}, \text{checkpoint } j = (jm)\text{th step ID})$								
0	Start	0								
1	Do segment 1	0	1							
2	Do segment 2	0	1	2						
2	Undo segment 1	0		2						
4	Do segment 3	0		2	3					
5	Do segment 4	0		2	3	4				
6	Undo segment 3	0		2		4				
7	Do segment 1	0	1	2		4				
8	Undo segment 2	0	1			4				
9	Undo segment 1	0				4				
10	Do segment 5	0				4	5			
11	Do segment 6	0				4	5	6		
12	Undo segment 5	0				4		6		
13	Do segment 7	0				4		6	7	
14	Do segment 8	0				4		6	7	
15	Undo segment 7	0				4		6		
16	Do segment 5	0				4	5	6		
17	Undo segment 6	0				4	5			
18	Undo segment 5	0				4				
19	Do segment 1	0	1			4				
20	Do segment 2	0	1	2		4				
21	Undo segment 1	0		2		4				
22	Do segment 3	0		2	3	4				
23	Undo segment 4	0		2	3					
24	Undo segment 3	0		2						
25	Do segment 1	0	1	2						
26	Undo segment 2	0	1							
27	Undo segment 1	0								

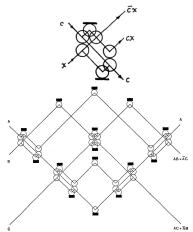
³Bennett 1989.

How can we build one?

Fredkin and Toffoli⁵ gave some of the first examples







⁵Fredkin and Toffoli 1981.

Can we build one?

- ► The billiard ball only requires classical mechanics.
- ➤ An ambitious master's project by Ressler⁶ even managed to design a full fledged CPU, complete with arithmetic unit and memory stores using the formalism!
- ▶ In principle, such a computer could compute without any dissipation. In practice, though....⁷

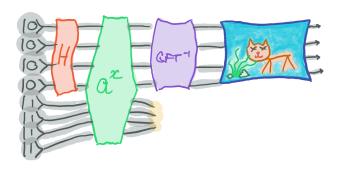
Even if classical balls could be shot with perfect accuracy into a perfect apparatus, fluctuating tidal forces from turbulence in the atmospheres of nearby stars would be enough to randomise their motion within a few hundred collisions. Needless to say, the trajectory would be spoiled much sooner if stronger nearby noise sources (e.g., thermal radiation and conduction) were not eliminated.

⁷Ressler 1981.

⁷Bennett 1982.

Quantum Computing: Reversible?

- Quantum mechanics is time symmetric as well.
- What about wavefunction collapse?
- Quantum computers cannot be allowed to mix with their environment at all (tricky!).
- ▶ This means that all quantum computers must be reversible!



Outline

Reversible Computing

Molecular Computing

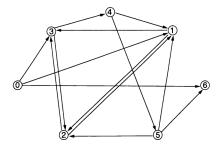
Limits of Thermal Computing

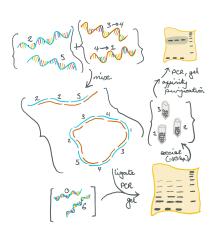
Cooperative Thermal Computing Resource Sharing Communication

Programming a Reversible Computer

Early days: Adleman⁸

- One of the earliest
- Solve for Hamiltonian paths with DNA!
- Experimentally verified!





⁷Adleman 1994.

Early days: Rothemund's DNA Turing Machine⁹

- DNA and restriction enzyme system
- Quite complicated!

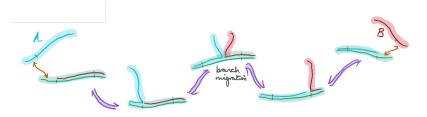
⁸Rothemund 1995.

Modern Approaches

- The previous two examples demonstrate that molecular computing is possible.
- Unfortunately they're not very practical!
- Luckily, autonomous molecular computation is possible.
- Over the last 20 years or so, much work has been done on dynamic DNA nanotechnology.
- We will look at the two most popular systems for molecular computation that have emerged:
 - ► DNA Strand Displacement (DSD),
 - The Tile Assemble Model (TAM).

DNA Strand Displacement

- ▶ DSD¹⁰ has emerged as a near standard after over a decade of work by many pioneers.
- It is built from the primitive operation shown below, of 'toehold'-mediated strand exchange.



¹⁰Seelig et al. 2006.

Chemical Reaction Networks

- Is DSD expressive enough to compute?
- It turns out it can implement any CRN.
- ▶ A CRN is an abstraction of chemical reactions.
- ▶ It is defined by a set of species, and a set of reactions between those species.
- ► E.g. $A + 2B + C \longrightarrow 3D + E$, $A \longrightarrow 2A$, ...
- ▶ Why are CRNs useful? Well, Soloveichik¹¹ showed that any Register Machine can be simulated by a CRN...

¹¹Soloveichik, Seelig and Winfree 2010.

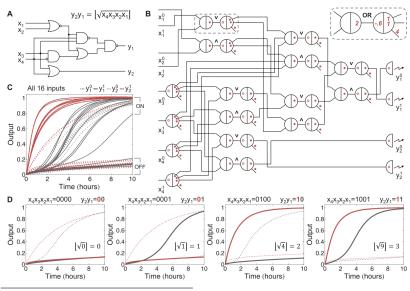
Simulating CRNs with DSD

- ▶ By cascading variants of these, we can implement any CRN reaction $\sum_i \alpha_i X_i \longrightarrow \sum_i \beta_i Y_i$, perhaps with some additional fuel and waste strands.
- ► This is not the only construct that can be used in DSD. VisualDSD¹² is a tool to compile any CRN into a DSD scheme using any of the various approaches.

Reaction	Inputs	Outputs	Fuel	Waste
$\overline{\qquad} AND \colon A + B \longrightarrow Y$	A, B	Y		X
$\mathtt{FANOUT}\colonA\longrightarrowX+Y$	Α	X, Y	В	

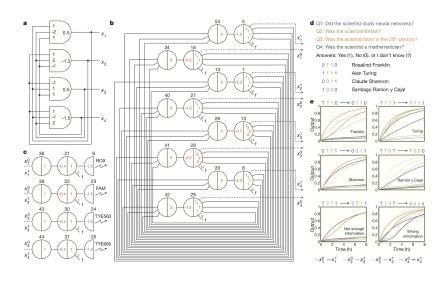
¹²Lakin et al. 2011.

Calculating Square Roots with DSD!¹³



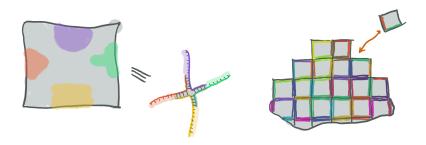
¹²Qian and Winfree 2011.

Neural Networks with DSD!¹⁴



¹³Qian, Winfree and Bruck 2011.

The Tile Assembly Model¹⁵

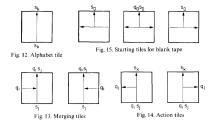


- ► TAM was developed by Erik Winfree for his PhD Thesis.
- Abstractly, it consists of a set of square tiles with 'coloured' edges. These are implemented in DNA as above.
- Like coloured edges can associate via their sticky ends.

¹⁴Winfree 1998.

Wang Tiles¹⁷

- Is TAM sufficiently expressive to compute?
- ► Tiling models have been studied for millennia.
- TAM turns out to be isomorphic to Wang tilings.
- Wang asked whether all tilesets would give a periodic pattern.
- ▶ It turns out that the answer to this is no, because a tileset can be constructed to simulate a Turing Machine!¹6



¹⁵Wang 1961.

¹⁶Robinson 1971.

Comparison

DSD

- + Impressive feats
- Not very composable
- Doesn't parallelise well
- Very error prone

TAM

- + Compact algorithms
- + Localised \Longrightarrow parallelism
- + Basic 'error correction'
- Keeps computation history
- Not very dynamic

- What does the future hold?
- ▶ I am seeking a new model to combine the strengths of DSD and TAM, but finding systems as robust as them is tricky!

Outline

Reversible Computing

Molecular Computing

Limits of Thermal Computing

Cooperative Thermal Computing Resource Sharing Communication

Programming a Reversible Computer

How far can Moore's law go?

- Historically, processor speeds have tended to double around every 2 years.
- Though they have stagnated recently, is there any upper limit?
- ▶ In 1962, Bremermann¹⁸ used the uncertainty principle to give the first estimate, $\nu \lesssim E/h$.
- ▶ Margolus and Levitin¹⁹ then refined this, $\nu \leq 2E/h$.
- Numerically, this gives $\nu \le 2.71 \times 10^{50} \, \mathrm{kg^{-1} \, s^{-1}}$.
- ▶ Lloyd²⁰ took this to its logical extreme, analysing the properties of the 'ultimate laptop' a kilogram of matter operating at this limit, compressed into a black hole, and performing 10^{32} operations on 10^{16} bits in $10^{-19}\,\mathrm{s}$ at an apparent temperature of $10^9\,\mathrm{K!}$

¹⁸Bremermann 1962.

¹⁹Margolus and Levitin 1998.

²⁰Lloyd 2000.

How big can we go?

- ▶ If we can't make our computers faster, can we make them bigger?
- ▶ Authors such as Sandberg²¹ describe concepts of 'Jupiter brains' immense spheres filled with computational matter.
- Suppose this matter is the Intel Xeon E5-2699 v4 (catchy)...
 - ► Est. stats: $\nu = 1.6 \times 10^{14} \, \mathrm{bit \, s^{-1}}$, $T = 300 \, \mathrm{K}$, $P = 145 \, \mathrm{W}$, $m = 0.1 \, \mathrm{kg}$, $V = 5 \, \mathrm{cm}^3$.
 - Note Landauer predicts $P = 0.6 \, \mu W$, a 2×10^8 difference!
- Our 'Jupiter' would contain 3×10^{29} of them, and radiate $4\times 10^{31}\,\rm W$, or $7\times 10^{14}\,\rm W\,m^{-2}$.
- ▶ The sun only outputs $4 \times 10^{26} \, \mathrm{W}$ or $7 \times 10^7 \, \mathrm{W \, m^{-2}}...$
- Our Jupiter would then have a surface temperature of $3 \times 10^5 \, \mathrm{K}$, let alone its core temperature!
- ▶ The Landauer limit is not much better, $T \sim 3000 \, \mathrm{K}$.

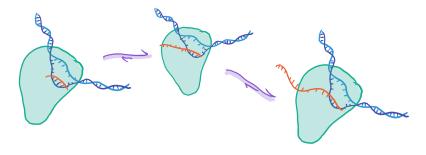
²¹Sandberg 1999.

Geometry of computing

- ► Volumetric irreversible computing is unsustainable, unless extreme temperatures can be tolerated.
- ▶ Heat can only be removed from its surface, which only scales with r^2 .
 - This is part of the reason why CPUs aren't stacked.
 - A large irreversible computer must be shell-like...
- ► What about reversible computers?
 - Reversible computers can in principle compute without dissipation.
 - ► In practice though, some energy is needed to keep things running smoothly.
 - Doesn't this imply the same scaling?

Can we do better?

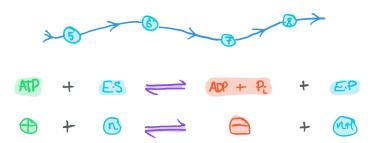
- Can't run a reversible computer without dissipation, is there a lower limit?
- ▶ Bennett²² was perhaps the first to point out that a reversible computer could be run close to thermodynamic equilibrium.
- ► This would not work for ballistic computers, but is appropriate for (bio)chemical computers.



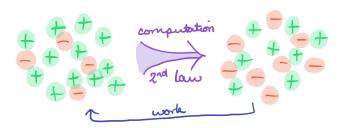
²²Bennett 1973.

Near-Equilibrium Computation

- A volumetric computer has to divide its energy $(\propto A)$ throughout its volume.
- ► So larger computers run arbitrarily close to equilibrium.
- ▶ Is this useful!?
- Let's build a model...

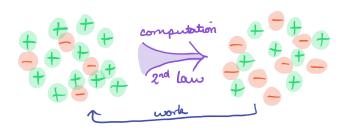


Maintaining a Bias



- ▶ We start off with a net bias, but this dissipates over time...
- ► We will need to do work to maintain the bias! How much work?

Maintaining a Bias



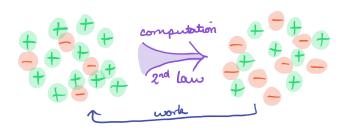
Appealing to information theory, the information content/entropy of each token has increased...

$$I = -p \log p - q \log q$$
 $\delta I = -\delta b \operatorname{arctanh} b + \mathcal{O}(\delta b^2)$

We need to 'reset' each token back to its original state!

$$\delta E \ge k_B T \delta I$$
 $P = \dot{E} \ge -k_B T \dot{b}$ arctanh b

Maintaining a Bias



▶ What is \dot{b} ? Time to do some IA chemistry!

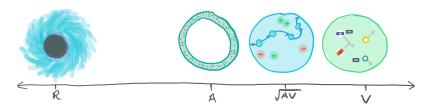
$$\partial_t[+] = k[C][-] - k[C][+] = -kb[C][\pm] \implies \dot{b} = -2kb[C]$$

$$P \ge 2kN_CN_\pm k_Bb \operatorname{arctanh} b \approx \alpha N_\pm b^2$$

Now, $P \sim A$ but $N_{\pm} \sim V$, so $b \sim 1/\sqrt{\ell}$ or $R \sim V^{5/6}$

What on Jupiter-Brain does that mean?

- $\blacktriangleright \ b \sim 1/\sqrt{\ell}$ shows that each individual computer is getting slower...
- ▶ But $R \sim V^{5/6}$ shows that the total computation rate is getting faster, faster than expected even!
- ▶ An irreversible body would only have $R \sim V^{4/6}$.
- So we're halfway between irreversible and ballistic!



The numbers

- 'Unambitious' Biocomputer
 - ▶ Power dissipation, $500 \, \mathrm{W \, m^{-2}}$
 - ightharpoonup Raw speed, $1\,\mathrm{bit}\,\mathrm{s}^{-1}$ per $5\,\mathrm{nm}^3$ unit
 - ▶ 1 metre³ computer, 10^{25} bit s⁻¹
- 'Typical' ARM Chip
 - ▶ Power dissipation, $2 \times 10^5 \, \mathrm{W \, m^{-2}}$ (1 W per $5.2 \, \mathrm{mm^2}$)
 - ightharpoonup (Landauer overhead 10^8)
 - ▶ Speed, $2.2 \times 10^{12} \, \rm bit \, s^{-1}$
 - ▶ 1 metre 3 computer, 10^{18} bit s $^{-1}$
- ► Not directly comparable
 - Parallel vs Serial
 - In raw terms though, reversible wins!

Outline

Reversible Computing

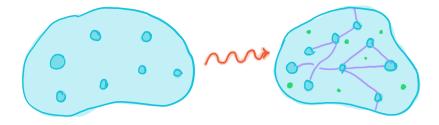
Molecular Computing

Limits of Thermal Computing

Cooperative Thermal Computing Resource Sharing Communication

Cooperative Chemical Computers

- ▶ The previous section covered a body of isolated computers.
- ▶ In practice, we will want them to interact...
 - Resource sharing
 - Communication
- How well do reversible computers fare?



Outline

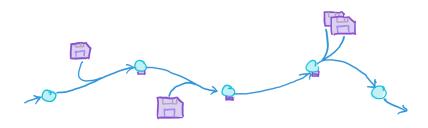
Reversible Computing

Molecular Computing

Limits of Thermal Computing

Cooperative Thermal Computing
Resource Sharing

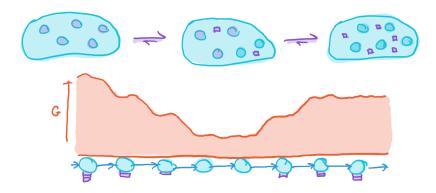
Resource Sharing



- ▶ Potentially unbounded memory is essential to computers
- Small chemical computers are clearly limited
- ► Can we engineer them to reversibly acquire and release additional memory when needed?

- As a naïve attempt, let's scatter resources freely throughout the medium... Compare with tRNAs, nucleotides, etc.
- ► The bias is low, so each computer doesn't have much energy to spare. We should aim for no energy difference then between the two states.

- Even though there's no energy difference, there's still a free energy difference!
- ► This leads to an unavoidable entropic force.
- ► Computers will get stuck in local free energy minima.



- ▶ Ok, so attempt #1 was subject to a chemical potential...
- What if we kept particle number the same?

- Unfortunately, there's still an entropic driving force!
- ► Intuitively because of the varying difficulty in acquiring and releasing resources...

- ▶ Digging our hole deeper, let's try stacking resources together...
- ▶ Now the difficulty for acquisition changes more slowly...
- ▶ To work out how slowly, we need to do some calculations...

- This is a non-equilibrium system, but we can assume the resource carriers are in a quasi-steady state. At any point in time, there will be an average \bar{n} resources per carrier (depending on the current demand for resources).
- We can then use the principle of maximum entropy to find the distribution of resources, getting a similar distribution to that of energy in an ideal gas...

$$\Pr\{n\} = Ae^{-\beta n} = \left(\frac{1}{1+\bar{n}}\right) \left(\frac{\bar{n}}{1+\bar{n}}\right)^n$$

$$\mathbb{P}_0 = \frac{1}{1+\bar{n}} \qquad \qquad \mathbb{P}_+ = \frac{\bar{n}}{1+\bar{n}}$$

- We can then find the rate equation for the resource reactions to find the *effective bias* of our resourceful reversible computers.
- ► The release reaction always has positive bias,

$$b_{\text{rel.}} = b\mathbb{P}_{+} + \frac{1}{2}(1+b)\mathbb{P}_{0}$$

The acquisition reaction is not so lucky,

$$b_{\text{acq.}} = b\mathbb{P}_{+} - \frac{1}{2}(1-b)\mathbb{P}_{0}$$

- We find that the acquisition reactions are only processive for $\bar{n} \gtrsim \sqrt{\ell/\ell_0}$.
- So we need to stuff our system with at least $(V/V_0)^{7/6}$ resources!

- ▶ Is all lost? The previous attempts show how futile fighting entropy can be!
- lt turns out there is a way to evade entropy here though...
- ► How? We implement resource sharing on top of the computers!

Outline

Reversible Computing

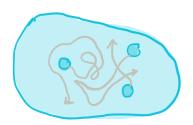
Molecular Computing

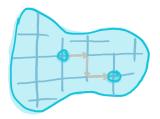
Limits of Thermal Computing

Cooperative Thermal Computing
Resource Sharing
Communication

Communication

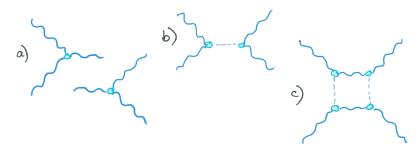
- Communication is perhaps more important than resource sharing.
- ► The first realisation is that free floating computers cannot communicate effectively unless actively propelled.
- Chemotaxis shows one way such problems could be solved, but it is actively dissipative!
- Therefore we must introduce some fixed lattice, not too unprecedented!





Lattice Communication

- ▶ Does using a lattice solve the problem? Unfortunately no...
- I am still actively researching this, but the crux is that most communication scenarios intrinsically rely on a decrease in entropy.
- ▶ The resource server example is a rare isentropic exception.
- ▶ It looks like the cost to communication is an unavoidable time penalty...



Outline

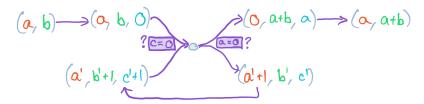
Reversible Computing

Molecular Computing

Limits of Thermal Computing

Cooperative Thermal Computing Resource Sharing Communication

- As this is a NatSci presentation, I won't go too much into programming!
- Programming reversibly not too much different from normal programming.
- ► Need to be more careful about manipulation of information and merging control flow...
- ▶ Time for a live demo?



Thanks!

Department of Applied Mathematics and Theoretical Physics (DAMTP)

